
Auto-Surprise
Release [0.1.2]

Rohan Anand, Joeran Beel

May 03, 2022

USAGE GUIDE

1 Quick Start 3
1.1 Installing . 3
1.2 Quick Example . 3

2 Manual 5
2.1 Loading the dataset . 6
2.2 Initializing Auto-Surprise Engine . 6
2.3 Starting the Optimization process . 6
2.4 Building the best Model . 7

3 Reproducing Experiments 9

4 Evaluation 11

5 Results 13

i

ii

Auto-Surprise, Release [0.1.2]

Auto-Surprise is an easy-to-use python AutoRecommenderSystem (AutoRecSys) library. It automates algorithm se-
lection and hyperparameter tuning to build an optimized recommendation model. It uses the popular scikit library
Surprise for recommender algorithms and Hyperopt for hyperparameter tuning.

Unfortunately, currently only linux systems are supported, but you can use WSL in windows as well.

To get started with Auto-Surprise, check out the Quick Start guide. If you have any issues or doubts, head over to the
Github repository and create an issue.

USAGE GUIDE 1

http://surpriselib.com/
https://github.com/hyperopt/hyperopt
https://github.com/BeelGroup/Auto-Surprise

Auto-Surprise, Release [0.1.2]

2 USAGE GUIDE

CHAPTER

ONE

QUICK START

1.1 Installing

You will require Python >=3.6 and a linux based OS. With pip, installing Auto-Surprise is as easy as

pip install auto-surprise

Thats it. You are ready to get started

1.2 Quick Example

Here’s a quick example of using Auto-Surprise to determine the best algorithm and hyperparameters for the Movielens
100k dataset.

Import required libraries
from surprise import Dataset
from auto_surprise.engine import Engine

Load the dataset
data = Dataset.load_builtin('ml-100k')

Intitialize auto surprise engine
engine = Engine(verbose=True)

Start the trainer
best_algo, best_params, best_score, tasks = engine.train(

data=data,
target_metric='test_rmse',
cpu_time_limit=60 * 60, # Run for 1 hour
max_evals=100

)

Thats it, after about 1 hour you should have the best algorithm along with the best parameters. To learn more, continue
with the Manual

3

Auto-Surprise, Release [0.1.2]

4 Chapter 1. Quick Start

CHAPTER

TWO

MANUAL

Here, we will cover in more detail the usage for Auto-Surprise. We will start with an example, and go through each
section

import hyperopt
from surprise import Reader, Dataset
from auto_surprise.engine import Engine

Load the movielens dataset
file_path = os.path.expanduser('./ml-100k/u.data')
reader = Reader(line_format='user item rating timestamp', sep='\t', rating_scale=(1, 5))
data = Dataset.load_from_file(file_path, reader=reader)

Intitialize auto surprise engine
engine = Engine(verbose=True)

Start the trainer
best_algo, best_params, best_score, tasks = engine.train(

data=data,
target_metric='test_rmse',
cpu_time_limit=60*60*2,
max_evals=100,
hpo_algo=hyperopt.tpe.suggest

)

Build the model using the best algorithm and hyperparameters
best_model = engine.build_model(best_algo, best_params)

5

Auto-Surprise, Release [0.1.2]

2.1 Loading the dataset

Auto-Surprise requires your dataset to be an instance of surprise.dataset.DatasetAutoFolds. You can learn more about
this by reading the Surprise Dataset Docs

2.2 Initializing Auto-Surprise Engine

Engine is the main class for Auto-Surprise. You will need to initialize it once before you start using it.

engine = Engine(verbose=True, algorithms=['svd', 'svdpp', 'knn_basic', 'knn_baseline'])

• verbose: By default set to True. Controls the verbosity of Auto-Surprise.

• algorithms: The algorithms to be optimized. Must be in the form of an array of strings. Available choices
are [‘svd’, ‘svdpp’, ‘nmf’, ‘knn_basic’, ‘knn_baseline’, ‘knn_with_means’, ‘knn_with_z_score’, ‘co_clustering’,
‘slope_one’, ‘baseline_only’]

• random_state: Takes numpy.random.RandomState. Set this, as well as random.seed and numpy.seed, to make
experiments reproducible.

2.3 Starting the Optimization process

To start the optimization method, you can use the train method of Engine. This will return the best algorithm, hyper-
parameters, best score, and tasks completed.

best_algo, best_params, best_score, tasks = engine.train(
data=data,
target_metric='test_rmse',
cpu_time_limit=60*60*2,
max_evals=100,
hpo_algo=hyperopt.tpe.suggest

)

There are a few parameters you can use.

• data: The data as an instance of surprise.dataset.DatasetAutoFolds.

• target_metric: The metric we seek to minimize. Available options are test_rmse and test_mae.

• cpu_time_limit: The time limit we want to train. This is in seconds. For datasets like Movielens 100k, 1-2 hours
is sufficient. But you may want to increase this based on the size of your dataset

• max_evals: The maximum number of evaluations each algorithm gets for hyper parameter optimization.

• hpo_algo: Auto-Surprise uses Hyperopt for hyperparameter tuning. By default, it’s set to use TPE, but you can
change this to any algorithm supported by hyperopt, such as Adaptive TPE or Random search.

6 Chapter 2. Manual

https://surprise.readthedocs.io/en/stable/dataset.html

Auto-Surprise, Release [0.1.2]

2.4 Building the best Model

You can use the best alogithm and best hypermaters you got from the train method to build a model.

best_model = engine.build_model(best_algo, best_params)

You can pickle this model to save it and use it elsewhere.

2.4. Building the best Model 7

Auto-Surprise, Release [0.1.2]

8 Chapter 2. Manual

CHAPTER

THREE

REPRODUCING EXPERIMENTS

You may want to make sure that your results are reproducible. This can be done easily by setting the seed and random
state when initializing Engine.

from auto_surprise.engine import Engine

random.seed(123)
numpy.random.seed(123)

Intitialize auto surprise engine with random state set
engine = Engine(verbose=True, random_state=numpy.random.RandomState(123))

This will make sure that you’re results will be exactly the same, provided you’re other training params also stay the
same.

9

Auto-Surprise, Release [0.1.2]

10 Chapter 3. Reproducing Experiments

CHAPTER

FOUR

EVALUATION

We tested Auto-Surprise against 3 datasets

• Movielens 100k

• Jester Dataset 2 (100k Random sample)

• Book Crossing (100k random sample)

We then ran all surprise algorithms in their default configuration. We then ran Auto-Surprise with a time limit set to 2
hours and the target metric as RMSE. We also compared our results to gridsearch on a smaller search space.

11

Auto-Surprise, Release [0.1.2]

12 Chapter 4. Evaluation

CHAPTER

FIVE

RESULTS

Table 1: Results for Movielens 100k Dataset
Algorithm RMSE MAE Time
Normal Predictor 1.5195 1.2200 00:00:01
SVD 0.9364 0.7385 00:00:23
SVD++ 0.9196 0.7216 00:14:23
NMF 0.9651 0.7592 00:00:25
Slope One 0.9450 0.7425 00:00:15
KNN Basic 0.9791 0.7738 00:00:18
KNN with Means 0.9510 0.7490 00:00:19
KNN with Z-score 0.9517 0.7470 00:00:21
KNN Baseline 0.9299 0.7329 00:00:22
Co-clustering 0.9678 0.7581 00:00:08
Baseline Only 0.9433 0.7479 00:00:01
GridSearch 0.9139 0.7167 27:02:48
Auto-Surprise (TPE) 0.9136 0.7280 02:00:01
Auto-Surprise (ATPE) 0.9116 0.7244 02:00:02

Table 2: Results for Jester 2 Dataset (100k Random Sample)
Algorithm RMSE MAE Time
Normal Predictor 7.277 5.886 00:00:01
SVD 4.905 3.97 00:00:13
SVD++ 5.102 4.055 00:00:29
NMF – – –
Slope One 5.189 3.945 00:00:02
KNN Basic 5.078 4.034 00:02:14
KNN with Means 5.124 3.955 00:02:16
KNN with Z-score 5.219 3.955 00:02:20
KNN Baseline 4.898 3.896 00:02:14
Co-clustering 5.153 3.917 00:00:12
Baseline Only 4.849 3.934 00:00:01
GridSearch 4.7409 3.8147 80:52:35
Auto-Surprise (TPE) 4.6489 3.6837 02:00:10
Auto-Surprise (ATPE) 4.6555 3.6906 02:00:01

13

Auto-Surprise, Release [0.1.2]

Table 3: Results for Book Crossing Dataset (100k Random Sample)
Algorithm RMSE MAE Time
Normal Predictor 4.8960 3.866 00:00:01
SVD 3.5586 3.013 00:00:11
SVD++ 3.5842 2.991 00:01:48
NMF – – –
Slope One – – –
KNN Basic 3.9108 3.562 00:00:38
KNN with Means 3.8574 3.301 00:00:35
KNN with Z-score 3.8526 3.292 00:00:37
KNN Baseline 3.6181 3.101 00:00:36
Co-clustering 4.0168 3.409 00:00:19
Baseline Only 3.5760 3.095 00:00:02
GridSearch 3.5467 2.9554 48:29:46
Auto-Surprise (TPE) 3.5221 2.8871 02:00:58
Auto-Surprise (ATPE) 3.5190 2.8739 02:00:06

We see an improvement of anywhere from 0.8 - 4.0 % in RMSE using Auto-Surprise. The time taken to evaluate is
also significantly less when compared to GridSearch.

14 Chapter 5. Results

	Quick Start
	Installing
	Quick Example

	Manual
	Loading the dataset
	Initializing Auto-Surprise Engine
	Starting the Optimization process
	Building the best Model

	Reproducing Experiments
	Evaluation
	Results

